第二百八十五章 陈氏定理_我的老师是学霸 首页

字体:      护眼 关灯

上一章 目录 下一章

第二百八十五章 陈氏定理

第(2/3)页

开口说道,“接下来,我直接阐述当K为奇数情况下,等差素数猜想的证明!”

  顾律的证明正式开始。

  台下的众人一个个正襟危坐,竖起耳朵,笔记本摆在手边,随时准备记录,生怕漏掉任何一个细节。

  和昨天一样,顾律不借助任何电子设备的辅助,直接在黑板上一步步推导演绎等差素数猜想的证明过程。

  关于等差素数猜想,顾律是在昨天下午才刚刚证明成功的。

  但每一个细节,每一道步骤,早就烙印在顾律的脑海里。

  顾律现在需要做的,就是将其在众人面前呈现。

  会议室内,数台摄影机同时对准顾律,拍摄下顾律证明的全过程。

  对数学界来说,这是一份注定的宝贵影像资料。

  …………

  “……我们首先命P(1,2)为适合下列条件的的素数p的个数,x——p=p1或x——p=p1p2。其中,p1,p2,p3都是素数。”

  “接下来,我们用x表示一充分大的偶数,命Cx=Π(p>2)p-1/p-2Π(p>2)(1-1/(p-1)^2)。对于任意给定的偶数h,以及充分大的xp,用xh(1,2)表示满足下面条件的素数p的个数:p≤x,p+h=p1或p+h=p2p3。在这里,p1,p2,p3同样代表素数。”

  “……之后,我们便会得到两个定理,分别是:

  定理一:【(1,2)及Px(1,2)≥0.67xCx/(logx)^2.】

  定理二:对于任意偶数h,都存在无限多个素数p,使得p+h的素因子的个数不超过2个以及xh(1,2)≥0.67xCx/(logx)^2.】”

  顾律讲了已经有五分钟的时间。

  四块黑板,其中有将近两块黑板已经快被顾律所写的公式占满。

  而顾律采用的证明等差素数猜想的方法,在随着不断的顾律的阐述已经初见端倪。

  尤其是康斯坦丁,可以说看的最为透彻。

  顾律的证明过程,确实是使用了陈氏定理。

  但和康斯坦丁猜测的不同,顾律引用的并非是陈氏定理的具体内容,而是陈院士当年在推导陈氏定理过程中,使用的一些方法和理论。

  比如说,顾

(本章未完,请翻页)
记住手机版网址:m.02shuwu.cc
加入书签我的书架

上一章 目录 下一章