第三百三十二章 艾普斯坦公式_我的老师是学霸 首页

字体:      护眼 关灯

上一章 目录 下一章

第三百三十二章 艾普斯坦公式

第(3/3)页

导致截然不同的后续运动——对轮盘赌来说就是小球停在截然不同的格子里。

  仅仅通过初始条件,便通过推导计算得出小球的停落点,这是很难做到的。其中需要极其庞大的计算量。

  当年的顾律,就是凭借从计算机学院朋友那借来的一台微型的计算机,到赌场中完成了将赢率从-2.7%到25%的操作,短短两个小时的时间赢下三四个亿的美元。

  后来微型计算机被发现,顾律被认定为作弊,不仅赢下来钱被追回,连顾律的名字都被各大赌场拉进黑名单。

  这算是顾律的一段黑历史。

  而当年的顾律之所以会使用微型计算机,那是因为顾律那时候计算力属性值并不高的缘故。

  那时顾律的计算力属性值才大概一百多点,仅仅差不多是一般计算器的运算速度。

  但现在不同了。

  顾律的运算力提升到的四级。

  运算速度和小型的计算机差别并不是很大。

  这就使得顾律即便不借助微型计算机的辅助,依旧可以迅速准确的算出小球有可能的落点。

  …………

  计算轮盘赌中小球落点的公式被称为艾普斯坦公式。

  因为这是由一名叫做艾普斯坦的数学家创造的。

  不过这位数学家艾普斯坦的人生结局并不算多么美好,虽然发明了这套公式,但却没有拥有和这套公式相适配的运算速度,最终只能贫穷一生。

  艾普斯坦公式适应的基础参数有两个。

  一个是轮盘的倾斜角度要高于0.5度,另一个是小球的重量要低于7.5克。

  这两个条件在瑞沃斯赌场全部满足。

  于是刚才,顾律通过荷官的动作获取小球的各种初始数值,再加上轮盘的各种参数等,代入艾普斯坦公式进行计算。

  顾律推算出小球会落在代表着数字7的格子上。

  当然,顾律的这个推算并不是完全准确。

  之前就说过。

  这个艾普斯坦公式只有25%的准确率。

  顾律可以一次押中,还是有一部分运气在的。

  
记住手机版网址:m.02shuwu.cc
加入书签我的书架

上一章 目录 下一章